Situation du PV: quelques généralités

Prof. Christophe Ballif CSEM—EPFL Neuchâtel Switzerland

Forum PV, Yverdon, 2021

"CSEM EPFL

A long way to go in our energy consumption

2

166'000 TWh

Still 80% fossile fuel

Hope in the «dark orange part growth»

Electricitiy of biomass, hydro, solar, wind taken with a factor 1/0.38

Quick rule of thumbs estimations for the world:

ourworldindata.org

 With a 2% growth in primary energy need → 250'000 TWh in 2050 (around 1000 x austria/ch today)

- Strong electrification of heating/mobility + power to gas (by 2030) with a gain of 2.5 + biomass
- →100'000 TWh electrical production by 2050 (in 2020 hydro ~ 4300 TWh Nuclear 2600 TWh, wind 1500 TWh, Solar 700 TWh, Global around 25'000 TWh)

4 major options

- a) e.g. 40 TW of Solar and 15 TW of Wind (+ Hydro + Biomass)
 b) 11'000 x 1 GW nuclear power plants (or 100'000 MACR SMR)
 c) Carbon sequestration
- d) Don't care

" csem

Today's «Guardian» front page

'Reality check' / Global CO2 emissions shooting back to record levels

Fossil fuels are surging in postpandemic recovery as scientists warn 1.5C emission limits will be reached in 11 years

Facebook Climate misinformation on social network 'increasing substantially', study says

Cop26 More than 40 countries agree to phase out coal-fired power

US Oil giants top list of lobby offenders holding back climate action

A short look at Europe (in a area connected scenario) for clean power sector (with only moderate electrificiation) **

CSEM

Michael Child, C. Breyer, et al. Renewable Energy 139 (2019) 80-101 Battery storage and pumped hydro necessary to balance the grid on an hourly basis

Cheaper and greener: unbeatable price for solar and wind in large systems

In 2030. less than 1 cts/kWh in Sunny country and hydrogen for < 1\$/kg

At the core of PV systems: learning curve of PV modules

Current «increasing» standard PV module price down to 30 cts/Wp ~ 40-60 CHF/m²

- 2021: 1 m² of 20% module ~ 60 CHF \rightarrow 6000-9000 kWh EU over 30 years
- PV modules better by a factor 15-20 in terms of energy import costs vs gasoline **

#CSEM **1 W PV modules -> 1cts/kW, 1 liter oil imported
(3kWh mechanical in combustion engine) 60 cts → 20 cts/kWh useful

• Temporary price increase because of shortage (polysilicon, glass, silver) brings mainstream PV prices higher.... (from 20 to 30 cts in one year)

Scenario for a decarbonised future

Implication for PV

- If the world is serious: at least 30-40 TW of PV by 2050 (CH 40-50 GW)
- Increase production volume to 1 2 TW annual from 0.15 TW/year today

- How much does it cost to put in place 1.5 TW of production ? (from sand to modules): with recent «CAPEX» decrease ~ 120-150 M€/GW → 180 billions € or 18 billions per year over 10 years
- Still a lot place for research and innovation !

Installation at ~500 MW per year 3 GW end 2020 4-5% of 60 TWh

Should move to 700 MW/Year (BFE with current support) (→ 20 GW by 2050)

13

A factor at least 2 not enough (even though ok for CH 2035 current target)

- Incentive not sufficient
- Perspective not sufficient EPFL

How to solve the «winter problem»

- Put more quickly more photovoltaics everywhere and curtail (easy)
- Put more PV on facades and in the alps (less easy but useful)
- Increase some dams height, optimise for Swiss autarcy not costs
- **Promote wind more** / reduce time to construction and opposition
- Build peakers gas/hydrogen turbines or HF small plants, with short operation time (only a few weeks per year)
- Do not stop safe nuclear powerplants too early
- Store biomass, use for district heating, store heat in Summer, geothermal for winter
- Rely on EU grid, supply and assets (e.g. close to 300 GW gas which could turn to hydrogen, strong wind growth). Import/export will continue
- Reduce consumption for a few critical weeks in Winter (e.g. maintenance of industrial assets, reduction of heating, high current peak price), why not reduce confort (18°C for three weeks is good for health)

" csem

Sustainability

- No worry, but good practice required
- Enough silicon for PV panels
- Enough materials for batteries and electrolysers
- Possible temporary bottlenecks
 (→ a Marshall plan to prepare the supply)

The various types of silicon technologies

Source:

Ballif/Haug et al.

To be published

" CSem

a) Al-BSF

c) p-PERT Al₂O₃/SiN_x Si:B

tunnel SiO_x poly Si:P Si:B 4

n⁺

n-Si

Ag

g) IBC

n⁺ FSF SiO₂/SiN_x

point contacts

f) n-PERT

A drastic change in the PV industry lead by need for higher <u>efficiecny</u>

PV Technology Shares by Production

- PERC solar cells are taking >90% of the c-Si market. Typical cells at 22-23% in production, module at 20-21%, record cells at 23.7-25% full cells (Q-cells)
- TOPCON and Heterojunction as high higher efficiency products pulling, with efficiency in the 23.5%-24% in production , with reccord at 25.4% (Topcon, Jinko) and 25.6% (Heterojunction, Maxwell/Sundrive) full front-contacted cells
 - **IBC** up to 25% in production (Sunpower)

Source : PV tech

#CSef

Why efficiency increase ?

b) Module design change (0.5-1.5% absolute gain)

19

More bubars: reduce losses in siliver finger (gain 0.1-1% relative)

Half-cells: less losses in cupper ribbon interconnects (gain 2% relative)

Larger cells: less empty area, less edges per area (up to 21 x 21 cm2 solar cells) (0.5-1% relative)

Larger modules: less spacinga the edge (1-2% relative for 700 W modules)

" csem

Haug, Ballif et all. To be published

Permanent increase in the module efficiency

• 0.4-0.5% gain per year

Efficiency of PV modules will further increase
 (average 21.5-22.5% in 2025)

20

• Practical limit at 24-25% for silicon modules

" CSeM

Purified silicon usage per watt

- Improved processes (poly-si)
- Diamond sawing
- Efficiency increase

From 17 to 3.5 g/W in 20 years, With low grey energy System payback in One year !

Favor the renewal of a large PV industry in Europe ??

«CSem

Ready to pay more for a product with local content, less CO2 from polysilicon ?

No controversial human rights practice ?

Revive a European Industry ?

Reduce independancy to Asia ?

Invitation to all installers: promote EU products, with EU cells even if more expensive...

" csem

XX MEYER BURGER

Meyer Burger Black

Heterojunction Module

Maximum performance: Up to 20 percent more energy yield – even in low light conditions, such as in the morning and evening hours or with cloudy skies

Maximum quality: Production of solar cells and modules according to the highest standards and exclusively in Germany

Maximum durability: Guaranteed yields for decades

Maximum stability: Patented SmartWire technology makes the modules extremely rugged and efficient

Maximum elegance: Understated and superb design – invented in Switzerland

Meyer Burger (Industries) GmbH Carl-Schiffner-Str. 17 09599 Freiberg Germany

www.meyerburger.com

Over 1 GW production line installed with heterojunctions (annual capacity) with «CSEM&EPFL inside» technology: Hevel, Ecosolifer, REC, Meyer Burger, ENEL

7 GW announced in Europe (ENEL, MB)

MB interconnections with «smartwires» with much lower Ag content !

:: CSer

To faciliate the energy transition

All people with enough means should buy local (industry rebuild)

Make people love renewables and solar

4

I

H

H

Private house Neuchâtel

Courtesy L.E. Perret-Aebi

" CSem

Private garden Neuchâtel

compáz

Courtesy L.E. Perret-Aebi

Watt is Art

26.03-25.04.2021

EPFL Pavilions

Transforming the world, building and cities

Thanks for your attention

"We need many more E. Becquerel's Children" Unknown source

FONDS NATIONAL SUISSE Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

:: CSeM

Contact christophe.ballif@epfl.ch

Best scenario for an energy transition

- Developp massively renewable energy production (wind, solar, hydro, geothermal, biomass)
- Less consumption and more efficiency whenever possible
- Develop storage technologies (short and long term)
- Develop intelligence and flexibility in the grid and sector coupling
- Bring sutainable fuel for industrial processes (e.g. H2)

- Maintain limited assets for reserve energy (e.g. gas powerplants working in mid-term with H2/Biogas)
- (maintain safe nuclear when possible)

« csem

" CSem

Technology infra-structure Platforms	Coatings and thin film devices fabrication	Cells Pilot lines	Modules R&D lines	Polymers coumpounding/ extrusion	Batteries fabrication and storage tesing	Data /AI energy management
	Reliability and accelerated aging tests					
	Metrology and characterization					

~ 85 people

" CSem

2000 m2 by end 2021 (+500 in 2021) + access to 800 m2 EPFL PV-lab in NE

(34)

Large ecosystems of large companies, SME start-up, electric utilities which develop/need solutions around/requiring solar technology, energy management and flexibility

2019-2021: Contracts/collaboration with ~45 companies, 70% in Switzerland

Expected 2021 (MCHF) 5.5 base funding 5.2 Industrial 2.0 Innosuisse 1.3 FNS/SFOE 2.6 EU

